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1.0. INTRODUCTION

The Army is planning to upgrade existing Abrams main battle tanks to a newer model. The
Abrams M1A2 conversion program will provide an Abrams tank with the necessary
improvements in lethality, survivability, and fightability required to defeat the threat of the
2000's. This upgrade enhances the capabilities of the older M!-series vehicles but these
enhancements add considerable weight to the converted tank. With these additions, the
converted MIA2 can weigh up to 70 tons. The Systems Engineering Division of the Abrams
Project Manager's Office was concerned whether the current M1 (IPM1 and M1A1) lifting
configuration, that portion of the tank by which it is lifted for transportation purposes, would
remain strong enough to withstand the additional load. Refer to Fig. i-1 for other details.

The tank is lifted via a cable harness which is attached at the four corners of the tank. The
attachment points on the tank are called lifting eyes. The front lifting eye is a two-piece welded
design: an upper portion, the eye, and a lower portion, the base, which is welded to the hull of
the tank (Fig. 1-2). There are two types of lifting procedures (see Figs. 1-2 and 1-3) which are
given in MIL-STD-209G. One uses a spreader bar (Fig. 1-3) which spreads the load and
consequently the stresses on the lifting eye are not as concentrated or severe. The other method
has no such spreader bar. Hence, higher stress concentrations are expected to arise when the
tank is lifted using no spreader bar. This lifting eve's ability to withstand additional load while
the tank was being lifted was the particular concern of the PM Abrams, Systems Engineering
Division. This report discusses a detailed three-dimensional nonlinear finite element stress
analysis of the front lifting eye for present and proposed designs. Three-dimensional analyses
are computationally intensive, hence the analysis was performed on a high-performance
computer (CRAY 2).

2.0. OBJECTIVE

The objective of this project was to determine whether the front lifting eyes of the M1, IPM1
and M1AI1 (thru November 1990) Abrams tanks are strong enough to support the weight of the
heavier M1A2 tank. As requested by the Systems Engineering Division of PM Abrams. the
front lifting eyes were used as objects of the stress analysis. A detailed nonlinear three-
dimensional finite element analysis--with appropriate design loads and boundary conditions
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specified by MI1 -STD-209H, AMSTA-T, and General Dynamics Land Systems (GDLS)
engineers--was used to analyze the strength of the front lifting eye.

3.0. CONCLUSIONS

The analysis indicates that the front lifting eyes of the M1, IPM1 and M1AT1 (thru November
1990} have sufficient strength to support the weight of the M1A2 when a spreader bar is used
as part of the lifting harness. When the spreader bar is not incorporated, the lifting eyes have
just enough strength to support the vehicle. Specifically, when the lifting harness is used
without the spreader bar, the maximum stresses in the lifting eye as obtained by the finite
element method are marginally below the criteria for faiiure as specified by MIL-STD-209H.

To further strengthen the weld, two different configurations were analyzed, namely, fuli-
penetration weld, and an additional weld added to the existing design. Both full-penetration or
additional welds will improve the strength of the lifting eye compared to the existing design. It
was observed that the differences between maximum stresses in full-penetration analysis and
additional weld analysis are marginal (see discussions in section 5.4.1-5.4.5). In addition, the
cost involved for adding weld to the existing design is less compared to the full-penetration
weld. Due to the above considerations additional welds are recommended. An analysis was
also performed to investigate the optimum amount of additional welds and their critical

locations.

The analysis follows the recommendations in section 5 of the MIL STD-209-H. Following
these recommendations, the results of this report are based on a nonlinear finite element
analysis. No fatigue analysis or prototype tests were performed. Also, the lifting eyes were
modeled in like-new condition, without cracks or corrosion effects or creep effects.

4.0. RFCOMMENDATIONS

Itis r-ecommended that the spreader bar always be used when lifting the vehicle. The loads
imposed on the lifting eye are about 15 percent lower when the spreader bar is incorporated. It
is also recommended that additional welds instead of full-penetration weld be applied to the
base of the lifting eye. The strength of the existing weld of the lifting eye can be increased
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without incuring much cost by incorporating additional welds, much like the modified models
discussed in this report. Since field tests to find the strength of the transportability hardware
were to be conducted, it would prove beneficial if the pertinent data were recorded, kept and
subsequently compared to those in this study.

5.0. DISCUSSION

5.1. INTRODUCTION TO THE FINITE FLEMENT METHOD

The finite element method is an analysis technique used to solve the differential equations that
are the mathematical representative of many complex physical problems. Particularly the finite
element method compared to other numerical methods, can solve structural problems that have
complex geometry or material characterizations are or that have complex constraints or whose
load histories are complex or have any combination of these characteristics. The method can
also be used to numerically solve the equations arising from mechanical, thermal-acoustic or
fluid mechanic problems or problems that are a combination of these [1}].

[n solving certain structural problems, the finite element methodology breaks down a
continuous complex structure into a finite number of simple discrete regions or elements.
Examples of these elements in structural problems are beams, plates, shells, and solids. The
elements are then assembled to represent the structure physically. These assembled elements
closely model the local deformation of the structure under applied loading and constraints.
Thus the model exhibits deformations and stresses or strains of the physical model under the
specified loads and constraints. The number of elements used at critical regions is very
important to obtain a converged and numerically stable solution, since the finite element method
represents continuum problems with discrete elements [2].

The present analysis uses as far as possible, an extremely fine three-dimensional geometric
model in order to insure numerical stability and convergence. This fine mesh guarantees that
any nuances in stress distribution would be detected and could be distinguished. A nonlinear
analysis was performed in order to better model the material changes that the lifting eye
underwent under such a large load. The weld's and the rest of the eye were each given material
properties obtained from General Dynamics Land Systems and are given in Table 5-1 and 5-2.
Due to the accuracy requirements and complexity of the three-dimensional analysis, the

12




analysis was performed on a CRAY -2 supercomputer. The extent of the weld and its geometry
is fully described below as are the various boundary conditions and load cases.

S.2. MODELING PHILOSOPHY

Engineering intuition and experience indicated that if failure would occur, it would occur at the
weld, so the area around the weld was modeled with very fine three-dimensional elements.
This would reproduce the deformation history in that area exactly to within possible numerical
approximations; similarly, the stress and strain history would be reproduced by this fine
model. The problems of numerical stability and convergence were also explored in the
modeling and analysis. In contrast, the noncritical areas were modelled using a coarser mesh,
since only grosser deformations were of interest.

A modeling methodology used in solving structural problems begins with the failure criteria
that the structural component is to satisfy. From these criteria, the area where failure occurs
could be identified and the geometric model made to better concentrate on that area. From these
criteria, the type of structural analysis is determined, for example, static or dynamic, linear or
nonlinear or buckling. Material properties although given may be modified by the failure
criteria. Simplifications can be made. A full modeling stratagem thus arises.

The failure criteria given in MIL-STD-209H state that the design limit load will not be less than
2.3 times the static load and the ultimate load will not be less than 1.5 times the design limit
load. Using these load factors and the loading configuration given by GDLS and MIL-STD-
209H, it was decided that von Mises failure criteria would be used as the conservative method
of determining failure. So if a von Mises stress exceeds the yield strength with a 2.3
multiplication factor on the load, or if it exceeds the uitimate strength using a 2.3 X 1.5 load
factor, we would say that the lifting eye failed. This interpretation of the failure criteria in MIL-
STD-209H was conveyed in discussions held with engineers from GDLS. The same criteria
was employed in the analysis of transportability, tiedown and liftability analysis.

The weld being a critical area, it was decided that the material might not be completely elastic
due to large loads, so a nonlinear static analysis with yield strength and ultimate strength given
in the appropriate tables was used.

[t was felt that a pressure load more realistically modeled the load application. Therefore, the
area where the lifting pin contacted the lifting eye was calculated and the load was applied over

13




that area (Fig. 5-1). Another reason to use pressure loads is to overcome singularities that arise
in the numerical methods when point loads or line loads are applied.

Four different finite element models (FEM) were created for this project. The first simulated
the actual condition of the front lifting eye of the M1, IPM1 and M1A1 (thru November 1990)
tanks. 'The second simulated the lifting eye with a full-penetration weld. The third and fourth
models were proposed modifications to the lifting eyes. For the first two models, both loads,
with and without the spreader bar, were analyzed. For the last two models, the analyses
simulated the worst-case condition, without the use of a spreader bar.

A nonlinear, static analysis was used for all the models. This was because for the 3.45 load
factor, the stresses were going beyond yield, but below the ultimate strength of the material.

5.3. COMPUTER SOFTWARE AND HARDWARE

5.3.1. PATRAN. PATRAN is a pre/post-processing software package developed by PDA
Engineering [3]. PATRAN is used to visually create the FEM. PATRAN's post-processor
allows the analyst to view the results of the analysis in graphical form. The PATRAN software
resides on a Silicon Graphics Personal Iris.

5.3.2. ABAQUS. ABAQUS [4] is a large-scale, general-purpose finite element analysis
program capable of analyzing complex structures. The analyst first needs an input file, which
in this case was created using PATRAN. The input file defines the shape and material
properties of the model, as well as boundary conditions and loads. The program then
assembles and solves a system of equations on TARDEC's Cray-2 Supercomputer and outputs
the results. ABAQUS was developed by Hibbet, Karlsson, & Sorensen, Inc.

54. GEOMETRY OF THE MODELS

The dimensions were taken from Plate drawing No. 12337651 and Eye drawing No.
12337650 of the Abrams tank drawing package. All four models used 3-D solid elements.
Thus the models define the actual geometry, material properties, boundary conditions and
loading of the actual lifting eye. Also, all models had the welded regions incorporated.

5.4.1. MATERIALS. For this project, two materials were used. M1, IPM1 and MIAI
(thru November 1990) Abrams front lifting eyes are made of MIL-A-12560, which is also

14
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know as rolled homogeneous armor (RHA). The Properties for RHA are listed in TABLE 5-1

below.

Property Value
Elasticity Constant 29.0 x 100 psi
Poisson's Ratio 0.30
Yield Strength 95 - 153 ksi
Ultimate Strength 115 - 170 ksi

TABLE 5-1. RHA Material Properties

Also, the welded region was modeled for this project. The weld material was an AX-90 wire
and the properties are listed in TABLE 5-2 below. When a range is given, the lowest value
was used. To be on the conservative side, the lowest value of the range was used in the

analysis.

Property Value
Elasticity Constant 29.0 x 10° psi
Poisson's Ratio 0.30
Yield Strength 90 ksi
Ultimate Strength 110 ksi

TABLE 5-2. AX-90 Weld Material Properties
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5.4.2. BOUNDARY CONDITIONS. The loads used in this analysis simulate the
vehicle being lifted, with and without the spreader bar. Also, two magnitudes or load factors
were used. A design load which was 2.3 times actual, and an ultimate load which was 3.45
times actual were used. The load was applied to the model as a pressure. The area of the
contact patch closely resembles the actual contact with a clevis pin. Fig. 5-2 depicts the
location of the pressure load on the models. Note that the point of load is different with or
without the spreader bar. When looking from the side, the load acts vertically on the lifting eye
when the spreader bar is used. When the bar is not used, the load acts at a 41-degree angle
from vertical. TABLE 5-3 lists the forces that act on the lifting eye for the varying

configurations.
Force with no Load Factor

Direction With Without

of Force Spreader Bar Spreader Bar
[Resultant 36,630 1b 48,870 1b
I_ongitudinal (X) 0 34,238.6 1b
Vertical (Y) 36,167 1b 36,601 1b

I ateral (Z) 5,806 Ib 10,0953 1b

TABLE 5-3. Front Lifting Eye Loads

All of the models were constrained the same way. The constraints were applied to nodes. The
constraints were applied around the edge of the base of the lifting eye models. As can be seen
in Fig. 5-3, the front and rear edges of the lifting eye model were constrained from moving in
the vertical (Y) and longitudinal (X) directions. The left and right edges of the base were
constrained from moving in the vertical (Y) and lateral (Z) directions. This boundary condition
closely resembles the actual condition where the lifting eye is welded to the hull of the vehicle.

5.4.3. EXISTING LIFTING EYE CONFIGURATION. This model has the welds
and a gap of 0.030" in the exact locations as those of the actual lift eye. In this report the
model is called existingl and existing2. Existingl uses the 2.3 load factor and no spreader bar,
and existing2 uses the 3.45 load factor and no spreader bar. These models have 13,160 solid
elements and 16,007 nodes. The suffix B on the names means that the analysis was run with
spreader bar loads. In Fig. 5-4 the blue area is the RHA steel and the red area is the weld

material.
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5.4.4. FULL-PENETRATION CONFIGURATION. This model was created to
determine the added strength if a full-penetration weld was present. That is, there is no gap in
this model. The model is called Fullweld in this report. The suffix of a B means the analysis
was run with spreader bar loads. The finite element models for this case have 13,160 solid
elements and 15.860 nodes. See Fig.5-5.

5.4.5. MODIFIED DESIGN ONE. It is clearly evident that the full-penetration
configuration increases the strength of the lifting eye, but fabrication procedures may cause
distortion or material property changes to the lifting eye and/or parent matcrial. Hence. two
additional models which minimize fabrication procedures were created to study the strength
effects of additional welds versus the existing design and the full-penetration weld design on
the lifting eye. The first model was suggested by General Dynamics Land Systems engineers.
As can be seen in Fig. 5-6, filet welds were added around the base of the eye for added
strength. This model is named Modone, which is short for Modified Design One. Some
portion of the base plate, which is not contributing to the analysis was removed, hence this
model has 12,427 solid elements and 14,354 nodes.

5.4.6. MODIFIED DESIGN TWO. This modified design two was similar to the
modified design one but had a few less fillet welds at the back of the eye. The basic motivation
is to investigate optimum weld area to increase the strength and find the best location of
additional welds. See Fig. 5-7. Similar to the above modified design, this model has 12326
solid elements and 14299 nodes.

5.5. DISCUSSION OF_RESULTS

After the models were completed in PATRAN, the analysis was run using the Cray-2
Supercomputer. The result files were then translated and post-processing was done using
PATRAN. The color stress plots in this report were done using PATRAN. For this project.
the von Mises stress criterion, also known as the Maximum Distortion Energy criterion, was
used to interpret the results. According to the criterion, a given structural component is safe as
long as the maximum value of the distortion energy per unit volume in that material remains
smaller than the distortion energy per unit volume required to cause yield in the standard tensile
test specimen of the same material. For the 2.3 load factor, the von Mises stress from the
analysis was compared to the yield strength of the material. For the 3.45 load factor, the

20
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maximum von Mises stress was compared to the ultimate strength of the material. If the stress
was less than the material strength, the part was said to be safe. Von Mises stress takes into
account the shear stress effect, as well as the normal stress.

5.5.1. ASSUMPTIONS. Following are the basic assumptions in this analysis: The
lifting eyes were modeled in like-new condition, without cracks or corrosion effects or creep
effects. No fatigue analysis or prototype tests were performed. Further, the bottom base plate
was fixed to the top of the hul: of the tank.

5.5.2. EXISTING LIFTING EYE CONFIGURATION. The results of the analysis
show that the strength of the current lifting eye on the M1, IPM1 and early M1A1 is margina..y
lower than the strength required in MIL STD-209H for a 70-ton tank. TABLE 5-4 shows that
without the spreader bar the yield stresses in the model exceed the yield strength for the case of
3.45 times the maximum load. TABLE 5-5 also summarizes the results which are shown in
Figs. 5-8 to 5-11. The results in Figs. 5-8 to 5-11 show the von Mises stresses in the i.tting
eye on the outboard side of the vehicle. Note that the yield stresses in five elements on one
side and one or two elements on the other exceed the von Mises criterion. Three observations
should be made: only the yield criterion is exceeded, not the ultimate strength; No failure
occurs in the weld area; the area of yield failure is only one element deep, indicating that much
load-carrying capability still remains. The remaining figures that describe the analysis may be

found in Appendix A.
Yield Ultimate Load Von Mises

File Name |Strength (psi) | Strength (psi) | Factor |Stress (psi) [Location
ExistinglB | 95,000 115,000 2.3 79,507 in RHA
ExistinglB__| 90,000 110,000 2.3 26,532 in weld
Existing2B | 95,000 115,000 3.45 97,082 in RHA
Existing2B | 90,000 110,000 3.45 51,809 in weld
Existing1 95,000 115,000 2.3 98,856 in RHA
Existingl 90,000 110,000 2.3 72,505 in weld
Existing2 95,000 115,000 3.45 96,307 in RHA
Existing2 90,000 110,000 3.45 89,915 in weld

TABLE 5-4. Results for Existing Configuration
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5.5.3. FULL-PENETRATION. A description of the full-penetration weld may be found
in section 5.4.4. Again the lifting configuration with the spreader bar results in stresses that
meet the failure criteria of MIL-STD 209H for a 70-ton tank, See Figs 5-12 to 5-15. The
summary of these results is in TABLE 5-5 below. The nonlinear static analysis for the load
applied without the spreader bar are illustrated in Figs. 5-12 to 5-15. As before, the higher
stresses are on the outboard side, Figs 5-12 to 5-15. Throughout the analysis it can be seen
that the highest stresses seem to appear where the clevis pin meets the lifting eye. These
stresses are highly inaccurate and are probably due to the singularity in the numerical
algorithms. The von Mises criterion shows no ultimate failure with a load factor of 2.3x1.5
(3.45) times the actual load, according to MIL STD 209H. The ultimate failure criteria are met
in the weld zone. There are two comer elements that have the highest stress within the failure
criteria of MIL-STD-209H. In the base there are two areas of high stresses whose maxima are
within the criteria. Figs.5-12 to 5-15 show the stresses for the yield criteria in MIL-STD-
209H. The yield criteria are met and TABLE 5-5 summarizes the results. The results for the
inboard side as well as the rest of the figures are given in Appendix B.

Yield Ultimate Load Von Mises
File Name |Strength (psi) | Strength (psi) | Factor |Stress (psi) |Location
FullweldIB |95,000 115,000 2.3 76,505 in RHA
Fullweld1B [ 90,000 110,000 2.3 31,892 in weld
Fullweld2B | 95,000 115,000 3.45 93,857 in RHA
Fullweld2B {90,000 110,000 3.45 50,089 in weld
Fullweldl 95,000 115,000 2.3 95,172 in RHA
Fullweldl 90,000 110,000 2.3 76,145 in weld
Fullweld2 95,000 115,000 3.45 103,484 in RHA
Fullweld2 90,000 110,000 3.45 96,589 in weld

TABLE 5-5. Results for Full-Penetration Weld

5.54. MODIFIED DESIGN ONE. After discussions with the PM Abrams and
General Dynamics Land Systems regarding the above existing designs and full-penetration
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Full-penetration weld Von Mises stresses at 3.45 times design load with spreader bar
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weld analysis, GDLS has provided a design for strengthening the weld. The results for this
analysis with no spreader bar are shown in Figs. 5-16, 5-17 and TABLE 5-6. A comparison
between this model and the existing design shows that using similar conditions, a decrease
occurs in the nonweld area for the yield, but an increase occurs in the model for the ultimate
strength criteria. In the weld area, the critical one, there are no real differences in the maxima
of the yield or of the ultimate strength criteria. An examination of the weld area for the yield
condition shows that in the existing design the high stresses, that is, those above 60,000 psi,
are over a larger area and are more concentrated in the corner of the weld. The outboard side of
the modified design has the high stresses outside the weld area. The other areas of high
stresses are on two elements on the additional weld, that weld that is part of this design
modification (refer to Fig. 5-16 to 5-17). This type of distribution is even more pronounced
for the failure criteria that use a load factor of 3.45 times the actual load. Again note that in the
weld, stresses are higher and cover a larger area on the original model (for comparison see
Figs. 5-10 and 5-11 versus Figs. 5-16 and 5-17). To complete the analysis the remaining
figures may be found in Appendix C.

Yield Ultimate Load Von Mises
File Name |Strength (psi) | Strength (psi) | Factor |Stress (psi) |Location
Modonel 95,000 115,000 2.3 90,935 in RHA
Modonel 90,000 110,000 2.3 72,937 in weld
Modone?2 95,000 115,000 3.45 103,295 in RHA
Modone2 90,000 110,000 3.45 96,505 in weld

TABLE 5-6. Results for Modified Design One

5.5.5. MODIFIED DESIGN TWO. The results for this modified eye were very similar
to those of the modified design 1 discussed above. As can be seen in the summary TABLE 5-6
and TABLE 5-7, the maximum von Mises stresses in the Modtwo model were all slightly
lower than those in the Modone model, except for one. The Modtwo2 result had a maximum
von Mises stress of 115,000 psi. This value just passes and is higher than the 103,295 psi
maximum von mises stress witnessed in the Modone2 results (see Figs. 5-18 and 5-19).
Appendix D contains the rest of the figures for the analysis.
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Yield Ultimate Load Von Mises
File Name |Strength (psi) | Strength (psi) | Factor |Stress (psi) | Location
Modtwol 95,000 115,000 2.3 89,996 in RHA
Modtwol 90,000 110,000 2.3 72,190 in weld
Modtwo? 95,000 115,000 3.45 115,000 in RHA
Modtwo2 90,000 110,000 3.45 92,291 in weld

TABLE 5-7. Results for Modified Design Two
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APPENDIX A

ADDITIONAL STRESS PLOTS FOR THE
EXISTING FRONT LIFTING EYE CONFIGURATION
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APPENDIX B

ADDITIONAL STRESS PLOTS FOR THE
FULL-PENETRATION WELD CONFIGURATION
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APPENDIX C

ADDITIONAL STRESS PLOTS FOR THE
MODIFIED DESIGN ONE CONFIGURATION
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APPENDIX D

ADDITIONAL STRESS PLOTS FOR THE
MODIFIED DESIGN TWO CONFIGURATION
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